490,060 views
2 votes
2 votes
Evaluate this equation

Evaluate this equation-example-1
User Risingtiger
by
3.1k points

1 Answer

27 votes
27 votes

Given the integral


\displaystyle \int \tan(3x) \, dx

first substitute y = 3x and dy = 3 dx :


\displaystyle \int \tan(3x) \, dx = \frac13 \int \tan(y) \, dy

then rewrite tan(y) = sin(y)/cos(y) and substitute z = cos(y) and dz = -sin(y) dy :


\displaystyle \frac13 \int (\sin(y))/(\cos(y)) \, dy = -\frac13 \int \frac{dz}z

Recall that 1/z is the derivative of ln|z|. Then back-substitute to get the result in terms of x :


\displaystyle -\frac13 \int \frac{dz}z = -\frac13 \ln|z| + C


\displaystyle \frac13 \int \tan(y) \, dy = -\frac13 \ln|\cos(y)| + C


\displaystyle \boxed + C

User Paulo Janeiro
by
3.2k points