Answer and Step-by-step explanation: Spherical coordinate describes a location of a point in space: one distance (ρ) and two angles (Ф,θ).To transform cartesian coordinates into spherical coordinates:
![\rho = \sqrt{x^(2)+y^(2)+z^(2)}](https://img.qammunity.org/2021/formulas/mathematics/college/lf289qlrkr3js4t7z08mfw52rvcntmm9q8.png)
![\phi = cos^(-1)(z)/(\rho)](https://img.qammunity.org/2021/formulas/mathematics/college/y7omxt4itbekl0hxnrqaavy0l7t65ejoja.png)
For angle θ:
- If x > 0 and y > 0:
;
- If x < 0:
; - If x > 0 and y < 0:
;
Calculating:
a) (4,2,-4)
= 6
For θ, choose 1st option:
b) (0,8,15)
= 17
![\phi = cos^(-1)((15)/(17))](https://img.qammunity.org/2021/formulas/mathematics/college/jzli9p4gw9bcu2oo3uiqgmxuz7y8rr36uj.png)
![\theta = tan^(-1)(y)/(x)](https://img.qammunity.org/2021/formulas/mathematics/college/u38wwlbnv0a2o46q50j65z6trl31jalx79.png)
The angle θ gives a tangent that doesn't exist. Analysing table of sine, cosine and tangent: θ =
![(\pi)/(2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/5tz72qjyolfgoeebpjuu6vcc8tteuqsq8v.png)
c) (√2,1,1)
= 2
![\phi = cos^(-1)((1)/(2))](https://img.qammunity.org/2021/formulas/mathematics/college/ov099j3mv0ybpq2cp2rd7fov1kajndgqpq.png)
=
![(\pi)/(3)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/d0s3li4n8vzedfhovaikn8q60kq0z41n9f.png)
![\theta = tan^(-1)(1)/(√(2) )](https://img.qammunity.org/2021/formulas/mathematics/college/qpsqvv58h7wwsiljrz1yr3ab874lds343b.png)
d) (−2√3,−2,3)
= 5
![\phi = cos^(-1)((3)/(5))](https://img.qammunity.org/2021/formulas/mathematics/college/2lm67bl4hnfik30l454i1q5qwkycqusyaf.png)
Since x < 0, use 2nd option:
![\theta = \pi + tan^(-1)(1)/(√(3) )](https://img.qammunity.org/2021/formulas/mathematics/college/1km6akdiygdnmg99kjwa4wt8l1s7ibtjri.png)
![\theta = \pi + (\pi)/(6)](https://img.qammunity.org/2021/formulas/mathematics/college/dh257o4j3l7qrvtfr86i9x1wxsiuiwb1oj.png)
![\theta = (7\pi)/(6)](https://img.qammunity.org/2021/formulas/mathematics/college/908405d3vnqrfqci7fe7hk9c2x5jzp0lur.png)
Cilindrical coordinate describes a 3 dimension space: 2 distances (r and z) and 1 angle (θ). To express cartesian coordinates into cilindrical:
![r=\sqrt{x^(2)+y^(2)}](https://img.qammunity.org/2021/formulas/mathematics/high-school/xsv9ww9s8mtt1olzzrs2f40b3lpy4arvxj.png)
Angle θ is the same as spherical coordinate;
z = z
Calculating:
a) (4,2,-4)
=
![√(20)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/f3n8u5wtj4ei9auvljof1qbyx3gm2yjpzh.png)
![\theta = tan^(-1)(1)/(2)](https://img.qammunity.org/2021/formulas/mathematics/college/4fjt6rjsuxbkyvxwj5jpzl4kxl51mzgwk1.png)
z = -4
b) (0, 8, 15)
= 8
![\theta = (\pi)/(2)](https://img.qammunity.org/2021/formulas/mathematics/college/7cnvq3bwqrp7myxd6j2sexrenk8pbk9bi0.png)
z = 15
c) (√2,1,1)
=
![√(3)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/s33jigmx2gpnx3clkmjv4r9kg3iye7ic35.png)
![\theta = (\pi)/(3)](https://img.qammunity.org/2021/formulas/mathematics/college/rjuo0n9b17th588furb000btot2od7sylc.png)
z = 1
d) (−2√3,−2,3)
= 4
![\theta = (7\pi)/(6)](https://img.qammunity.org/2021/formulas/mathematics/college/908405d3vnqrfqci7fe7hk9c2x5jzp0lur.png)
z = 3