131k views
4 votes
Change each of the following points from rectangular coordinates to spherical coordinates and to cylindrical coordinates.

a. (4,2,−4)
b. (0,8,15)
c. (√2,1,1)
d. (−2√3,−2,3)

User Areim
by
5.2k points

1 Answer

1 vote

Answer and Step-by-step explanation: Spherical coordinate describes a location of a point in space: one distance (ρ) and two angles (Ф,θ).To transform cartesian coordinates into spherical coordinates:


\rho = \sqrt{x^(2)+y^(2)+z^(2)}


\phi = cos^(-1)(z)/(\rho)

For angle θ:

  • If x > 0 and y > 0:
    \theta = tan^(-1)(y)/(x);
  • If x < 0:
    \theta = \pi + tan^(-1)(y)/(x);
  • If x > 0 and y < 0:
    \theta = 2\pi + tan^(-1)(y)/(x);

Calculating:

a) (4,2,-4)


\rho = \sqrt{4^(2)+2^(2)+(-4)^(2)} = 6


\phi = cos^(-1)((-4)/(6))


\phi = cos^(-1)((-2)/(3))

For θ, choose 1st option:


\theta = tan^(-1)((2)/(4))


\theta = tan^(-1)((1)/(2))

b) (0,8,15)


\rho = \sqrt{0^(2)+8^(2)+(15)^(2)} = 17


\phi = cos^(-1)((15)/(17))


\theta = tan^(-1)(y)/(x)

The angle θ gives a tangent that doesn't exist. Analysing table of sine, cosine and tangent: θ =
(\pi)/(2)

c) (√2,1,1)


\rho = \sqrt{(√(2) )^(2)+1^(2)+1^(2)} = 2


\phi = cos^(-1)((1)/(2))


\phi =
(\pi)/(3)


\theta = tan^(-1)(1)/(√(2) )

d) (−2√3,−2,3)


\rho = \sqrt{(-2√(3) )^(2)+(-2)^(2)+3^(2)} = 5


\phi = cos^(-1)((3)/(5))

Since x < 0, use 2nd option:


\theta = \pi + tan^(-1)(1)/(√(3) )


\theta = \pi + (\pi)/(6)


\theta = (7\pi)/(6)

Cilindrical coordinate describes a 3 dimension space: 2 distances (r and z) and 1 angle (θ). To express cartesian coordinates into cilindrical:


r=\sqrt{x^(2)+y^(2)}

Angle θ is the same as spherical coordinate;

z = z

Calculating:

a) (4,2,-4)


r=\sqrt{4^(2)+2^(2)} =
√(20)


\theta = tan^(-1)(1)/(2)

z = -4

b) (0, 8, 15)


r=\sqrt{0^(2)+8^(2)} = 8


\theta = (\pi)/(2)

z = 15

c) (√2,1,1)


r=\sqrt{(√(2) )^(2)+1^(2)} =
√(3)


\theta = (\pi)/(3)

z = 1

d) (−2√3,−2,3)


r=\sqrt{(-2√(3) )^(2)+(-2)^(2)} = 4


\theta = (7\pi)/(6)

z = 3

User Kalyan Halder
by
4.8k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.