Answer:
The 95% confidence interval is
![84.83< \mu < 90.37](https://img.qammunity.org/2021/formulas/mathematics/college/x1ve6z7mr6i3tfxq06knqwsmk0dw3hbhj6.png)
Explanation:
From the question we are told that
The sample size is
![n = 113](https://img.qammunity.org/2021/formulas/mathematics/college/gxhu25b6nunfag69r0oc9m0xupr3txjp4n.png)
The sample mean is
The standard deviation is
![\sigma = 15](https://img.qammunity.org/2021/formulas/mathematics/college/k8zvg2ur3itb5h8bl8364ifuj2hvm8z3qj.png)
Given that the confidence level is 95% then the level of significance is mathematically represented as
![\alpha = 100 - 95](https://img.qammunity.org/2021/formulas/mathematics/college/dsyvtu098f5bowywat8dslb69iyamsnlub.png)
![\alpha = 5\%](https://img.qammunity.org/2021/formulas/mathematics/college/l6koyiq33uuw61a1y0ksuq045whs3bmre2.png)
![\alpha = 0.05](https://img.qammunity.org/2021/formulas/mathematics/college/445n2djo6b5zbv5df68kz5tjhh2puf9bol.png)
Next we obtain the critical value of
from the normal distribution table, the value is
![Z_{( \alpha )/(2) } = 1.96](https://img.qammunity.org/2021/formulas/mathematics/college/ystb624cjcvlole7j42l4s36p80k5hfzvd.png)
Generally the margin of error is mathematically evaluated as
![E = Z_{(\alpha )/(2) } * ( \sigma)/( √(n) )](https://img.qammunity.org/2021/formulas/mathematics/college/33uwndn7amj3skqzm3acfyli3mijfkdaid.png)
=>
![E = 1.96 * ( 15)/( √(113) )](https://img.qammunity.org/2021/formulas/mathematics/college/sckmve6uskjpr8of2ppvq7vgyr5ir9scva.png)
=>
![E = 2.77](https://img.qammunity.org/2021/formulas/mathematics/college/bwd8kc61lq1po40hwhkfva689fthpmb2lh.png)
The 95% confidence interval is mathematically represented as
![\= x - E < \mu < \= x + E](https://img.qammunity.org/2021/formulas/mathematics/college/xzqtqboxae51ygb3gidbha1g9wltku72bq.png)
substituting values
![87.6 - 2.77< \mu < 87.6 + 2.77](https://img.qammunity.org/2021/formulas/mathematics/college/i6h90u290fcjtsou090g6b85jciefk237o.png)
![84.83< \mu < 90.37](https://img.qammunity.org/2021/formulas/mathematics/college/x1ve6z7mr6i3tfxq06knqwsmk0dw3hbhj6.png)