Answer:
Solution :

Explanation:
![-3\left[\cos \left((-\pi )/(4)\right)+i\sin \left((-\pi \:)/(4)\right)\right]\:/ \:2√(2)\left[\cos \left((-\pi \:\:)/(2)\right)+i\sin \left((-\pi \:\:\:)/(2)\right)\right]](https://img.qammunity.org/2021/formulas/mathematics/college/f96bfkkbswkixbu0ljrhmz1e3e3vikfx0n.png)
Let's apply trivial identities here. We know that cos(-π / 4) = √2 / 2, sin(-π / 4) = - √2 / 2, cos(-π / 2) = 0, sin(-π / 2) = - 1. Let's substitute those values,

=
÷

=
÷

=
÷
=
÷
=

As you can see your solution is the last option.