54.2k views
3 votes
Express the quotient of z1 and z2 in standard form given that
z_(1) = -3[cos((-\pi )/(4) )+isin((-\pi )/(4) )] and
z_(2) = 2√(2) [cos((-\pi )/(2) )+isin((-\pi )/(2) )]

Express the quotient of z1 and z2 in standard form given that z_(1) = -3[cos((-\pi-example-1

1 Answer

3 votes

Answer:

Solution :
-(3)/(4)-(3)/(4)i

Explanation:


-3\left[\cos \left((-\pi )/(4)\right)+i\sin \left((-\pi \:)/(4)\right)\right]\:/ \:2√(2)\left[\cos \left((-\pi \:\:)/(2)\right)+i\sin \left((-\pi \:\:\:)/(2)\right)\right]

Let's apply trivial identities here. We know that cos(-π / 4) = √2 / 2, sin(-π / 4) = - √2 / 2, cos(-π / 2) = 0, sin(-π / 2) = - 1. Let's substitute those values,


(-3\left((√(2))/(2)-(√(2))/(2)i\right))/(2√(2)\left(0-1\right)i)

=
-3\left((√(2))/(2)-(√(2))/(2)i\right) ÷
2√(2)\left(0-1\right)i

=
3\left(-(√(2)i)/(2)+(√(2))/(2)\right) ÷
-2√(2)i

=
(3\left(1-i\right))/(√(2))÷
2√(2)i =
-3-3i ÷
4 =
-(3)/(4)-(3)/(4)i

As you can see your solution is the last option.

User ComputerDruid
by
7.7k points