Answer:
The height of the flag pole is approximately 19 feet and 2 inches.
Explanation:
Let suppose that length of the shadow of the object is directly proportional to its height. Hence:
![l \propto h](https://img.qammunity.org/2021/formulas/mathematics/high-school/27zmva69u4lnvdvi8u37ftyfezst8nnxsp.png)
![l = k\cdot h](https://img.qammunity.org/2021/formulas/mathematics/high-school/pidm3vft8gmj49qy93u1p29bhedbu6bcqm.png)
Where:
- Height of the object, measured in inches.
- Shadow length of the object, measured in inches.
- Proportionality constant, dimensionless.
Now, let is find the value of the proportionality constant: (
and
)
![h = (21)/(4)\,ft](https://img.qammunity.org/2021/formulas/mathematics/high-school/uscerxqudrvphprkatpuyot6a9rove3m0z.png)
![h = \left((21)/(4)\,ft \right)\cdot \left(12\,(in)/(ft) \right)](https://img.qammunity.org/2021/formulas/mathematics/high-school/2gwkiphc48k4uf0gg6bk798ndwhz2b5hcl.png)
![h = 63\,in](https://img.qammunity.org/2021/formulas/mathematics/high-school/fn8dbuylotpgmji78zwdszz1p8ncqkygy4.png)
![l = (2\,ft)\cdot \left(12\,(in)/(ft) \right) + (21)/(2)\,in](https://img.qammunity.org/2021/formulas/mathematics/high-school/et2qeh7nkq86vwn2p8genn4vy7zpnpgnis.png)
![l = 24\,in + (21)/(2)\,in](https://img.qammunity.org/2021/formulas/mathematics/high-school/u0v4duzqkmmb4q66uor366fohk88b5nx0c.png)
![l = (48)/(2)\,in+(21)/(2)\,in](https://img.qammunity.org/2021/formulas/mathematics/high-school/e7e3p8rirjc2hindc28qp1d3gtb7qoqlg1.png)
![l = (69)/(2)\,in](https://img.qammunity.org/2021/formulas/mathematics/high-school/bfr7mkdomwscqpvwioonka8gkhg0zd1k3j.png)
Then,
![k = (l)/(h)](https://img.qammunity.org/2021/formulas/mathematics/high-school/h4ioh1j9tl5ken7mjghia9no9stnnbhffo.png)
![k = ((69)/(2)\,in )/(63\,in)](https://img.qammunity.org/2021/formulas/mathematics/high-school/i29v3t82zmftaisia9i7iab708cb0lf1cy.png)
![k = (69)/(126)](https://img.qammunity.org/2021/formulas/mathematics/high-school/pnli98k8ziqu5dp6sjgvn6ehp03zlha12t.png)
![k = (23)/(42)](https://img.qammunity.org/2021/formulas/mathematics/high-school/w13kccodajir77zk8wychlsbd1bscxcy72.png)
The equation is represented by
. If
, then:
![l = (21)/(2)\,ft](https://img.qammunity.org/2021/formulas/mathematics/high-school/sscuxfjw3jejs73vq0rjbxjjst5l5wttvw.png)
![l = \left((21)/(2)\,ft \right)\cdot \left(12\,(in)/(ft) \right)](https://img.qammunity.org/2021/formulas/mathematics/high-school/earr3d1he3tfasooy36eljqxls00vxmc1i.png)
![l = 126\,in](https://img.qammunity.org/2021/formulas/mathematics/high-school/km0iimop26tsf3j2d900kxqawnokp9b5zs.png)
The height of the flag pole is: (
,
)
![h = (l)/(k)](https://img.qammunity.org/2021/formulas/mathematics/high-school/qtwu2donks6i97u6wob9bw4xcpape1lxn0.png)
![h = (126\,in)/((23)/(42) )](https://img.qammunity.org/2021/formulas/mathematics/high-school/t99bfi4451vcrwi8a4mdbttg1di9pm2a05.png)
![h = (5292)/(23)\,in](https://img.qammunity.org/2021/formulas/mathematics/high-school/m6xk7xwmm4ug9nrb58ul4m86fwf4yuc72r.png)
![h = 230\,(2)/(23)\,in](https://img.qammunity.org/2021/formulas/mathematics/high-school/ye4otmiehag819ywhxpk2q8btjrv2weqs7.png)
![h = (115)/(6)\,ft\,(2)/(23)\,in](https://img.qammunity.org/2021/formulas/mathematics/high-school/17fq6gyu4342emg124w0l1zab82osc6n4p.png)
![h = 19\,(1)/(6)\,ft \,(2)/(23)\,in](https://img.qammunity.org/2021/formulas/mathematics/high-school/jwwnmqd9vpt0kldhj3zq1nrormgkc5029h.png)
![h = 19\,ft\,\,2\,(2)/(23)\,in](https://img.qammunity.org/2021/formulas/mathematics/high-school/oktlwuw5te43ufxxch14o2hsp37hcbv342.png)
![h = 19\,ft\,\,2\,in](https://img.qammunity.org/2021/formulas/mathematics/high-school/w6qtkw1aucj60wdb45226y4az9703mc2a9.png)
The height of the flag pole is approximately 19 feet and 2 inches.