Answer:
Explanation:
Given that
sin(2θ)+sinθ=0
We know that
sin(2θ)=2 sinθ x cosθ
Therefore
2 sinθ x cosθ + sinθ=0
sinθ(2 cosθ+1)=0
sinθ= 0
θ=0
2 cosθ+1=0
cosθ= - 1/2
θ=120°
_______________________________________________________
![sin 2\theta=√(3cos\theta)](https://img.qammunity.org/2021/formulas/mathematics/college/jf77odbdw7j8tjmxm6tf5qyb4ht7w181wd.png)
By squaring both sides
![sin^2 2\theta={3cos\theta}](https://img.qammunity.org/2021/formulas/mathematics/college/5zxm6bv9vmex5o226c5b1e13weio0ozuo4.png)
4 sin²θ x cos²θ=3 cosθ
4 sin²θ x cos²θ - 3 cosθ=0
cos θ = 0
θ= 90°
4 sin²θ=3
θ=60°