221k views
4 votes
How do I solve these equations:

sin(2θ) + sin θ = 0
sin(2θ) = sqrt 3 cos θ

for intervals 0=< θ < 2pi

User Eric Cote
by
5.3k points

1 Answer

2 votes

Answer:

Explanation:

Given that

sin(2θ)+sinθ=0

We know that

sin(2θ)=2 sinθ x cosθ

Therefore

2 sinθ x cosθ + sinθ=0

sinθ(2 cosθ+1)=0

sinθ= 0

θ=0

2 cosθ+1=0

cosθ= - 1/2

θ=120°

_______________________________________________________


sin 2\theta=√(3cos\theta)

By squaring both sides


sin^2 2\theta={3cos\theta}

4 sin²θ x cos²θ=3 cosθ

4 sin²θ x cos²θ - 3 cosθ=0

cos θ = 0

θ= 90°

4 sin²θ=3

θ=60°

User Arne Jenssen
by
4.9k points