217k views
5 votes
Angles θ and φ are angles in standard position such that:

sinθ = -5/13 and θ terminates in Quadrant III

tanφ = -8/15 and φ terminates in Quadrant II


Find sin(θ + φ).

User Poldo
by
4.8k points

1 Answer

3 votes

When
\theta terminates in quadrant III, both
\cos\theta and
\sin\theta are negative, and


\sin^2\theta+\cos^2\theta=1\implies\cos\theta=-√(1-\sin^2\theta)=-(12)/(13)

When
\varphi terminates in quadrant II,
\cos\varphi is negative and
\sin\varphi is positive, so


1+\tan^2\varphi=\sec^2\varphi\implies\sec\varphi=-(17)/(15)

which gives


\cos\varphi=\frac1{-(17)/(15)}=-(15)/(17)


\tan\varphi=(\sin\varphi)/(\cos\varphi)=-\frac8{15}\implies\sin\varphi=\frac8{17}

Now,


\sin(\theta+\varphi)=\sin\theta\cos\varphi+\cos\theta\sin\varphi=-(21)/(221)

User Roi Menashe
by
3.4k points