15.9k views
5 votes
Find the area of the surface generated by revolving x=t + sqrt 2, y= (t^2)/2 + sqrt 2t+1, -sqrt 2 <= t <= sqrt about the y axis

User Bicep
by
6.8k points

1 Answer

4 votes

The area is given by the integral


\displaystyle A=2\pi\int_Cx(t)\,\mathrm ds

where C is the curve and
dS is the line element,


\mathrm ds=\sqrt{\left((\mathrm dx)/(\mathrm dt)\right)^2+\left((\mathrm dy)/(\mathrm dt)\right)^2}\,\mathrm dt

We have


x(t)=t+\sqrt 2\implies(\mathrm dx)/(\mathrm dt)=1


y(t)=\frac{t^2}2+\sqrt 2\,t+1\implies(\mathrm dy)/(\mathrm dt)=t+\sqrt 2


\implies\mathrm ds=√(1^2+(t+\sqrt2)^2)\,\mathrm dt=√(t^2+2\sqrt2\,t+3)\,\mathrm dt

So the area is


\displaystyle A=2\pi\int_(-\sqrt2)^(\sqrt2)(t+\sqrt 2)√(t^2+2\sqrt 2\,t+3)\,\mathrm dt

Substitute
u=t^2+2\sqrt2\,t+3 and
\mathrm du=(2t+2\sqrt 2)\,\mathrm dt:


\displaystyle A=\pi\int_1^9\sqrt u\,\mathrm du=\frac{2\pi}3u^(3/2)\bigg|_1^9=\frac{52\pi}3

User Jspboix
by
8.3k points