7.2k views
2 votes
Find the length S of the spiral (t cos(t), t sin(t)) for 0 ≤ t ≤ 3π. (Round your answer to three decimal places.) S =

User Fizruk
by
7.5k points

1 Answer

1 vote

The arc length is


S=\displaystyle\int_C\mathrm ds

where C is the given curve and ds is the line element. C is defined on 0 ≤ t ≤ 3π by the vector function,


\mathbf r(t)=(t\cos t,t\sin t)

so the line element is


\mathrm ds=\left\|(\mathrm d\mathbf r(t))/(\mathrm dt)\right\|\,\mathrm dt


\mathrm ds=\sqrt{\left((\mathrm d(t\cos t))/(\mathrm dt)\right)^2+\left((\mathrm d(t\sin t))/(\mathrm dt)\right)^2}\,\mathrm dt


\mathrm ds=√(1+t^2)\,\mathrm dt

So we have


S=\displaystyle\int_0^(3\pi)√(1+t^2)\,\mathrm dt\approx46.132

User Cbartosiak
by
7.2k points