234k views
0 votes
19. For the following unbalanced equation: S (s) O2 (g) H2O (l) ----> H2SO4 (aq) At what temperature (K) does O2 have to be if the volume of the gas is 5.01 L with a pressure of 0.860 atm to produce 17.55 grams of H2SO4

User Satvik
by
5.0k points

1 Answer

3 votes

Answer:

195.5 K

Step-by-step explanation:

We'll begin by writing the balanced equation for the reaction. This is given below:

2S + 3O2 + 2H2O → 2H2SO4

Next, we shall determine the number of mole in 17.55 g of H2SO4. This can be obtained as follow:

Molar mass of H2SO4 = (2x1) + 32 + (16x4) = 2 + 32 + 64 = 98 g/mol

Mass of H2SO4 = 17.55 g

Mole of H2SO4 =...?

Mole = mass /Molar mass

Mole of H2SO4 = 17.55/98

Mole of H2SO4 = 0.179 mole.

Next, we shall determine the number of mole of O2 needed for the reaction. This can be obtained as illustrated below:

From the balanced equation above,

3 moles of O2 reacted to produce 2 moles of H2SO4.

Therefore, Xmol of O2 will react to produce 0.179 moleof H2SO4 i.e

Xmol of O2 = (3 x 0.179) / 2

Xmol of O2 = 0.2685 mole

Therefore, 0.2685 mole of O2 is needed for the reaction.

Finally, we shall determine the temperature of O2. This can be obtained by using the ideal gas equation as follow:

Volume (V) of O2 = 5.01 L

Pressure (P) = 0.860 atm

Number of mole (n) of O2 = 0.2685 mole

Gas constant (R) = 0.0821 atm.L/Kmol

Temperature (T) =..?

PV =nRT

0.860 x 5.01 = 0.2685 x 0.0821 x T

Divide both side by 0.2685 x 0.0821

T = (0.860 x 5.01) /(0.2685 x 0.0821)

T = 195.5 K

Therefore, the temperature of O2 must be 195.5 K.

User ChenL
by
4.8k points