Answer:
![Probability = (1)/(3)](https://img.qammunity.org/2021/formulas/mathematics/college/yzlan0unsx8y55nm7cwpyouzpi8kmvf4hz.png)
Explanation:
Given
![Set:\ \{1, 2, 3, \ldots, 24\}](https://img.qammunity.org/2021/formulas/mathematics/college/3kw35ietqvju2kucm6954l01ecbfk4op0o.png)
![n(Set) = 24](https://img.qammunity.org/2021/formulas/mathematics/college/slspldv3cruwmwqmapaof9euvf3rl1yqa3.png)
Required
Determine the probability of selecting a factor of 4!
First, we have to calculate 4!
![4! = 4 * 3 * 2 * 1](https://img.qammunity.org/2021/formulas/mathematics/college/8xke9j185zp6kf506kf333mm4s9xesxj1o.png)
![4! = 24](https://img.qammunity.org/2021/formulas/mathematics/college/1cdrbtndfctvhiidy13g04g6mg8u6uq498.png)
Then, we list set of all factors of 24
![Factors:\ \{1, 2, 3, 4, 6, 8, 12, 24\}](https://img.qammunity.org/2021/formulas/mathematics/college/op0nrw2wh7wydt041xn0mytqfu5o94vkgp.png)
![n(Factors) = 8](https://img.qammunity.org/2021/formulas/mathematics/college/51iiv64iozsf5yguzvnkvzfqrkg00mwmkk.png)
The probability of selecting a factor if 24 is calculated as:
![Probability = (n(Factor))/(n(Set))](https://img.qammunity.org/2021/formulas/mathematics/college/je9mh2vp4crrpzo1biwi1brtgt534qa07y.png)
Substitute values for n(Set) and n(Factors)
![Probability = (8)/(24)](https://img.qammunity.org/2021/formulas/mathematics/college/hwvtb7mgyc4oh2yizmegkmgss01tfhdtym.png)
Simplify to lowest term
![Probability = (1)/(3)](https://img.qammunity.org/2021/formulas/mathematics/college/yzlan0unsx8y55nm7cwpyouzpi8kmvf4hz.png)