Answer:
The capacity of the container is 2546.78 cm³.
Explanation:
The volume of the frustum of a cone is:
![\text{Volume}=(\pi h)/(3)\cdot[R^(2)+Rr+r^(2)]](https://img.qammunity.org/2021/formulas/mathematics/high-school/ueiwh4hud7cqm6n4rmu2q0kksvlm8tvuza.png)
The information provided is:
r = 16/2 = 8 cm
R = 24/2 = 12 cm
h = 8 cm
Compute the capacity of the container as follows:
![\text{Volume}=(\pi h)/(3)\cdot[R^(2)+Rr+r^(2)]](https://img.qammunity.org/2021/formulas/mathematics/high-school/ueiwh4hud7cqm6n4rmu2q0kksvlm8tvuza.png)
![=(\pi\cdot8)/(3)\cdot[(12)^(2)+(12\cdot 8)+(8)^(2)]\\\\=(8\pi)/(3)* [144+96+64]\\\\=(8\pi)/(3)*304\\\\=2546.784445\\\\\approx 2546.78](https://img.qammunity.org/2021/formulas/mathematics/high-school/h1ltl1olcri9v3tgt54jexgidtyx6gcx68.png)
Thus, the capacity of the container is 2546.78 cm³.