Answer:
The number is
students
Explanation:
From the question we are told that
The population mean is
The standard deviation is
![\sigma = 34.4](https://img.qammunity.org/2021/formulas/mathematics/college/beq06npwrwyzo4f8iilsmw966utn3rv6g1.png)
The sample size is n = 2000
percentage of the would you expect to have a score between 250 and 305 is mathematically represented as
![P(250 < X < 305 ) = P(( 250 - 281)/(34.4 ) < (X - \mu )/(\sigma ) < ( 305 - 281)/(34.4 ) )](https://img.qammunity.org/2021/formulas/mathematics/college/u89esr0ultnyjot1t7e0ydwx2x9xki6iv2.png)
Generally
![(X - \mu )/(\sigma ) = Z (Standardized \ value \ of \ X )](https://img.qammunity.org/2021/formulas/mathematics/college/49x7eqzydr466vkjcy9k1rc4qh5r0qdkf8.png)
So
![P(250 < X < 305 ) = P(-0.9012< Z<0.698 )](https://img.qammunity.org/2021/formulas/mathematics/college/tregzhrainzespmx2l4gqwvtx2fy82glb6.png)
![P(250 < X < 305 ) = P(z_2 < 0.698 ) - P(z_1 < -0.9012)](https://img.qammunity.org/2021/formulas/mathematics/college/uu9d14qqofsq5ade86yz32zx9yhw4w42sp.png)
From the z table the value of
![P( z_2 < 0.698) = 0.75741](https://img.qammunity.org/2021/formulas/mathematics/college/3fcd0mi513ccb1stisx1pn7xm1xsy0itp8.png)
and
![P(z_1 < -0.9012) = 0.18374](https://img.qammunity.org/2021/formulas/mathematics/college/73z3o70feouhofpk7852ljak65pouvz74r.png)
![P(250 < X < 305 ) = 0.75741 - 0.18374](https://img.qammunity.org/2021/formulas/mathematics/college/hd7rkx2z3z2yjfpwqfpvd1m270ximlrtpi.png)
![P(250 < X < 305 ) = 0.57](https://img.qammunity.org/2021/formulas/mathematics/college/ye0yp92shaubhyisoi48st81ad3jz98wx7.png)
The percentage is
![P(250 < X < 305 ) = 57\%](https://img.qammunity.org/2021/formulas/mathematics/college/v9gju8299zp31njgv0txm3w1hysr2oplav.png)
The number of students that will get this score is
![N = 2000 * 0.57](https://img.qammunity.org/2021/formulas/mathematics/college/yamm3mzzmja588gpg3am3yvk9upfzkl8mz.png)
![N =1147](https://img.qammunity.org/2021/formulas/mathematics/college/fy5q7o18z5s5yzfulfczdl5mwhinzakp5f.png)