Answer:
1) a) 0.8
b) 0.6
2) a) 0.08
b) 0.14
Explanation:
1) Given
and
![P(B) = 0.5](https://img.qammunity.org/2021/formulas/mathematics/college/9qmli3ufz9399mucsu70rc899e0jvb9lif.png)
Let us learn about a formula:
![P(A\ or\ B) = P(A) +P(B) -P(A\ and\ B)\\OR\\P(A\cup B) = P(A) +P(B) -P(A\cap B)](https://img.qammunity.org/2021/formulas/mathematics/college/vxqgrfwpf9zjfk7ef29opmqkuo3roeog10.png)
(a) If A and B are mutually exclusive i.e. no common thing in the two events.
In other words:
=
= 0
Using above formula:
![P(A\ or\ B) = P(A) +P(B) -P(A\ and\ B)\\\Rightarrow P(A\ or\ B) = 0.3 + 0.5 -0 = \bold{0.8}](https://img.qammunity.org/2021/formulas/mathematics/college/9y3xwcec6rxlu1lj9pgkxg6pehzkyyujsp.png)
(b) P(A and B) = 0.2
Using above formula:
![P(A\ or\ B) = P(A) +P(B) -P(A\ and\ B)\\\Rightarrow P(A\ or\ B) = 0.3 + 0.5 -0.2 = \bold{0.6}](https://img.qammunity.org/2021/formulas/mathematics/college/8z4taum6n6c53tu7q1gng9m2zazv0vrqmk.png)
*************************************
1) Given
and
![P(B) = 0.2](https://img.qammunity.org/2021/formulas/mathematics/college/p4hc7zxw81zzttz99tw0ho05yp1dduo9rv.png)
Let us learn about a formula:
for dependent events
for independent events.
(a) If A and B are independent events :
Using the above formula for independent events:
![P(A\ and\ B) = 0.4 * 0.2 = \bold{0.08}](https://img.qammunity.org/2021/formulas/mathematics/college/ysvsr58q7c97j6m2zbf1aswotm3jnu3v2u.png)
(b)
![P(A / B) = 0.7](https://img.qammunity.org/2021/formulas/mathematics/college/n392qszo3hfzwk5donczri7s2mqoqshjxl.png)
Using above formula:
![P(A\ and\ B) = P(B) * P(A/B) = 0.2 * 0.7 = \bold{0.14}](https://img.qammunity.org/2021/formulas/mathematics/college/19a98nasit5spbf2cf7p3719vuxqjpdmw5.png)