Answer:
0.05cos10t
Step-by-step explanation:
X(t) = Acos(wt+φ)
The oscillation angular frequency can be calculated using below formula
w = √(k/M)
Where K is the spring constant
But we were given body mass of 5.0 kg
We know acceleration due to gravity as 9.8m)s^2
The lenghth of spring which stretches =10 cm
Then we can calculate the value of K
k = (5.0kg*9.8 m/s^2)/0.10 m
K= 490 N/m
Then if we substitute these values into the formula above we have
w = √(k/M)
w = √(490/5)
= 9.90 rad/s=10rads/s(approximately)
Its position as a function of time can be calculated using the below expresion
X(t) = Acos(wt+φ)
We were given amplitude of 5 cm , if we convert to metre = 0.05m
w=10rads/s
Then if we substitute we have
X(t)=0.05cos(10×t)
X(t)= 0.05cos10t
Therefore,Its position as a function of time=
X(t)= 0.05cos10t