74.2k views
3 votes
If the function Q(t)=4e-0.00938t models the quantity (in kg) of an element in a storage unit after t years, how long will it be before the quantity is less than 1.5kg? Round to the nearest year.

User NuLo
by
8.4k points

1 Answer

4 votes

Answer:

105 years

Explanation:

Given the function :

Q(t) = 4e^(-0.00938t)

Q = Quantity in kilogram of an element in a storage unit after t years

how long will it be before the quantity is less than 1.5kg

Inputting Q = 1.5kg into the equation:

1.5 = 4e^(-0.00938t)

Divide both sides by 4

(1.5 / 4) = (4e^(-0.00938t) / 4)

0.375 = e^(-0.00938t)

Take the ln of both sides

In(0.375) = In(e^(-0.00938t))

−0.980829 = -0.00938t

Divide both sides by 0.00938

0.00938t / 0.00938 = 0.980829 /0.00938

t = 104.56599

When t = 104.56599 years , the quantity in kilogram of the element in storage will be exactly 1.5kg

Therefore, when t = 105 years, the quantity of element in storage will be less than 1.5kg

User Tennisgent
by
8.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories