37.9k views
4 votes
This is progression
i need to know C plsssss
thankssssssssssßsssssss


This is progression i need to know C plsssss thankssssssssssßsssssss ​-example-1

1 Answer

1 vote

Answer:


l = 28

Explanation:

Given


S = \sum (2k - 3); k = 4\ to\ l

Required

What is l when S = 725

This can be solved using Sum of n terms of an AP;


S_n = (n)/(2)(T_1 + T_n)

Where


S_n = 725


T_1 = first\ term

To get T1; we substitute 4 for k in 2k - 3


T_1 = 2 * 4 - 3


T_1 = 8 - 3


T_1 = 5


T_n = last\ term

To get Tn; we substitute l for k in 2k - 3


T_n = 2 * l - 3


T_n = 2l - 3

n = the number of terms;

Since k = 4 to l, then


n = l - 4 +1


n = l - 3

Substitute these values in
S_n = (n)/(2)(T_1 + T_n)


725 = (l-3)/(2)(5 + 2l - 3)

Collect Like Terms


725 = (l-3)/(2)(2l + 5- 3)


725 = (l-3)/(2)(2l + 2)

Open the bracket


725 = (l-3)/(2) * 2l + (l-3)/(2) * 2


725 = (l-3) * l + (l-3)


725 = l^2-3l + l-3


725 = l^2-2l -3

Subtract 725 from both sides


725 - 725 = l^2-2l -3 - 725


l^2-2l -3 - 725 = 0


l^2-2l - 728 = 0


l^2 + 26l - 28l - 728 = 0


l(l + 26) - 28(l + 26) = 0


(l - 28)(l + 26) = 0


l - 28 = 0 or
l + 26 = 0


l = 28 or
l = -26

But l must be positive;

Hence,
l = 28

User Paleozogt
by
5.3k points