Answer:
![\large \boxed{\sf 15 \ \ and \ \ 24 \ \ }](https://img.qammunity.org/2021/formulas/mathematics/college/ttc5inu0jafpsjdl92cffxseypt6dlnfl7.png)
Explanation:
Hello,
We can write the following, x being the second number.
![(2x-6)^2+x^2=801\\\\6^2-2\cdot 6 \cdot 2x + (2x)^2+x^2=801\\\\36-24x+4x^2+x^2=801\\\\5x^2-24x+36-801=0\\\\5x^2-24x-765=0\\\\](https://img.qammunity.org/2021/formulas/mathematics/college/y4v2futexq6iaxzzmcx5hni09zftzvg1f6.png)
Let's use the discriminant.
![\Delta=b^4-4ac=24^2+4*5*765=15876=126^2](https://img.qammunity.org/2021/formulas/mathematics/college/lqdtihdxxc5d7fwqzr4si0sj37g5p5qvc9.png)
There are two solutions and the positive one is
![(-b+√(b^2-4ac))/(2a)=(24+126)/(10)=(150)/(10)=15](https://img.qammunity.org/2021/formulas/mathematics/college/rym3b54loz1gfkgffzk91ub39buc18opk0.png)
So the solutions are 15 and 15*2-6 = 30-6 = 24
Hope this helps.
Do not hesitate if you need further explanation.
Thank you