Answer:
The answer is:
![\bold{c\approx 20.2\ units}](https://img.qammunity.org/2021/formulas/mathematics/high-school/61bgg999cygeqwzodhdehna5kkkwer0yce.png)
Explanation:
Given:
In △ABC:
m∠A=15°
a=10 and
b=11
To find:
c = ?
Solution:
We can use cosine rule here to find the value of third side c.
Formula for cosine rule:
![cos A = (b^(2)+c^(2)-a^(2))/(2bc)](https://img.qammunity.org/2021/formulas/mathematics/high-school/89umq9005jafh9codo3n48kj6c7xr9rhxy.png)
Where
a is the side opposite to
![\angle A](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ro5v4ulqwms62zgk8kilypt6ikigafld2k.png)
b is the side opposite to
![\angle B](https://img.qammunity.org/2021/formulas/mathematics/middle-school/8i4h48h1mlas636iyt733f8z9pve72x2b6.png)
c is the side opposite to
![\angle C](https://img.qammunity.org/2021/formulas/mathematics/middle-school/50gml08sqqfzab4jephova9sjryrd57qen.png)
Putting all the values.
![cos 15^\circ = (11^(2)+c^(2)-10^(2))/(2* 11 * c)\\\Rightarrow 0.96 = (121+c^(2)-100)/(22c)\\\Rightarrow 0.96 * 22c= 121+c^(2)-100\\\Rightarrow 21.25 c= 21+c^(2)\\\Rightarrow c^(2)-21.25c+21=0\\\\\text{solving the quadratic equation:}\\\\c = (21.25+√(21.25^2-4 * 1 * 21))/(2)\\c = (21.25+√(367.56))/(2)\\c = (21.25+19.17)/(2)\\c \approx 20.2\ units](https://img.qammunity.org/2021/formulas/mathematics/high-school/olf62eu4zindncmyjverkbbbb8a526xozg.png)
The answer is:
![\bold{c\approx 20.2\ units}](https://img.qammunity.org/2021/formulas/mathematics/high-school/61bgg999cygeqwzodhdehna5kkkwer0yce.png)