Answer:
Option 3 = both spheres are at the same potential.
Step-by-step explanation:
So, let us complete or fill the missing gap in the question above;
" A charge is placed on a spherical conductor of radius r1. This sphere is then connected to a distant sphere of radius r2 (not equal to r1) by a conducting wire. After the charges on the spheres are in equilibrium BOTH SPHERES ARE AT THE SAME POTENTIAL"
The reason both spheres are at the same potential after the charges on the spheres are in equilibrium is given below:
=> So, if we take a look at the Question again, the kind of connection described in the question above (that is a charged sphere, say X is connected another charged sphere, say Y by a conducting wire) will eventually cause the movement of charges(which initially are not of the same potential) from X to Y and from Y to X and this will continue until both spheres are at the same potential.