Answer:
1) AD=BC(corresponding parts of congruent triangles)
2)The value of x and y are 65 ° and 77.5° respectively
Explanation:
1)
Given : AD||BC
AC bisects BD
So, AE=EC and BE=ED
We need to prove AD = BC
In ΔAED and ΔBEC
AE=EC (Given)
( Vertically opposite angles)
BE=ED (Given)
So, ΔAED ≅ ΔBEC (By SAS)
So, AD=BC(corresponding parts of congruent triangles)
Hence Proved
2)
Refer the attached figure
![\angle ABC = 90^(\circ)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/1iba9qrx0ur9gu6fnnr53fw2x5v6r207ez.png)
In ΔDBC
BC=DC (Given)
So,
(Opposite angles of equal sides are equal)
So,
![\angle CDB=\angle DBC=x](https://img.qammunity.org/2021/formulas/mathematics/middle-school/g6o4lqmh34ng5ucxu8zxetpkyszdppp1wb.png)
So,
(Angle sum property)
x+x+50=180
2x+50=180
2x=130
x=65
So,
![\angle CDB=\angle DBC=x = 65^(\circ)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/k1kkfb8yp1om60ahyn3q7lrty84fhsuxsg.png)
Now,
![\angle ABC = 90^(\circ)\\\angle ABC=\angle ABD+\angle DBC=\angle ABD+x=90](https://img.qammunity.org/2021/formulas/mathematics/middle-school/j2hoi2a8goqxcgl2latybb1uzpqhggaz2q.png)
So,
![\angle ABD=90-x=90-65=25^(\circ)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/jl395poc6d1kyh7yq4py6lpo5xxjflyrrg.png)
In ΔABD
AB = BD (Given)
So,
(Opposite angles of equal sides are equal)
So,
![\angle BAD=\angle BDA=y](https://img.qammunity.org/2021/formulas/mathematics/middle-school/crfoapjb1djp844dkag0ke8dpj5c7mvtrb.png)
So,
(Angle Sum property)
y+y+25=180
2y=180-25
2y=155
y=77.5
So, The value of x and y are 65 ° and 77.5° respectively