Answer:
proved: see explanation below
Explanation:
The parallelogram ABCD has cordinates point A is (0,0) point B is (10,0) point C is (12,7) and point D is (3,7).
For the opposite sides of ABCD to be congruent, the slope of the opposite sides would be equal
If AB // CD, BC // AD, it’s a parallelogram.
If slope of AB = CD, BC = AD then it’s a parallelogram.
slope = Δy/Δx
slope AB = (0-0)/(10-0) = 0
slope BC = (7-0)/(12-10) = 7/2
slope CD = (7-7)/(12-3) = 0
slope DA = (0-7)/(0-3) = 7/3
slope DA is supposed to be equal to slope BC
It means the coordinate of D is (2,7)
slope DA becomes= (0-7)/(0-2) = 7/2
Therefore it would be proved that the opposite sides of ABCD are congruent as two pair of slopes are equal