Answer:
a) 6
Explanation:
Expanding the polynomial using the formula:
![$(x+y)^n=\sum_(k=0)^n \binom{n}{k} x^(n-k) y^k $](https://img.qammunity.org/2021/formulas/mathematics/middle-school/lo684o5yup3nsq4f44qvcucsixlzlqyajb.png)
Also
![$\binom{n}{k}=(n!)/((n-k)!k!)$](https://img.qammunity.org/2021/formulas/mathematics/high-school/ou64sqfxae9g0bdnhbilq7akar632ndhpg.png)
I think you mean
![210x^6y^4](https://img.qammunity.org/2021/formulas/mathematics/middle-school/kwxd2ur68csi1sqq7wxuligkoot3y2tvzq.png)
We can deduce that this term will be located somewhere in the middle. So I will calculate
.
For
![k=5](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ju5gv4usvhu3zkygr42l192qv7jgnnne4i.png)
![$\binom{10}{5} (y)^(10-5) (x)^(5)=(10!)/((10-5)! 5!)(y)^(5) (x)^(5)= (10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5! )/(5! \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 ) \\ =(30240)/(120) =252 x^(5) y^(5)$](https://img.qammunity.org/2021/formulas/mathematics/middle-school/y006292k9sseuwxqsu99z6vyxdclwtb9e7.png)
Note that we actually don't need to do all this process. There's no necessity to calculate the binomial, just
![x^(n-k) y^k](https://img.qammunity.org/2021/formulas/mathematics/middle-school/z44o1c88mc2s0x7prclv8zr1lb4c8dsfhs.png)
For
![k=6](https://img.qammunity.org/2021/formulas/mathematics/middle-school/7qw1g08j5h0gpemdhg2gho48acnc2wawdx.png)
![$\binom{10}{6} \left(y\right)^(10-6) \left(x\right)^(6)=(10!)/((10-6)! 6!)\left(y\right)^(4) \left(x\right)^(6)=210 x^(6) y^(4)$](https://img.qammunity.org/2021/formulas/mathematics/middle-school/a5b18kpj3180t70kcq8sz1llr8ck5x99zp.png)