Answer:
107 m down the incline
Step-by-step explanation:
Given:
v₀ₓ = 25 m/s
v₀ᵧ = 0 m/s
aₓ = 0 m/s²
aᵧ = -10 m/s²
-Δy/Δx = tan 35°
Find: d
First, find Δy and Δx in terms of t.
Δy = v₀ᵧ t + ½ aᵧ t²
Δy = (0 m/s) t + ½ (-10 m/s²) t²
Δy = -5t²
Δx = v₀ₓ t + ½ aₓ t²
Δx = (25 m/s) t + ½ (0 m/s²) t²
Δx = 25t
Substitute:
-(-5t²) / (25t) = tan 35°
t/5 = tan 35°
t = 5 tan 35°
t ≈ 3.50 s
Now find Δy and Δx.
Δy ≈ -61.3 m
Δx ≈ 87.5 m
Therefore, the distance down the incline is:
d = √(x² + y²)
d ≈ 107 m