Answer:
a. The volume of Pyramid A is double that of Pyramid B.
b. The new volume of B is equal to the volume of A.
Explanation:
The base of pyramid A is a rectangle with length 10 meters and width 20 meters.
The base of pyramid B is a square of side length 10 meter.
Both pyramids have the same height, h.
The volume of a pyramid is given as:
V = lwh / 3
where l = length
w = width
h = height
The volume of Pyramid A is:
V = (10 * 20 * h) / 3 = 66.7h cubic metres
The volume of Pyramid B is:
V = (10 * 10 * h) / 3 = 33.3h cubic metres
By comparing their values, the volume of Pyramid A is double that of Pyramid B.
If the height of B increases to 2h, its new volume is:
V = (10 * 10 * 2h) / 3 = 66.7h cubic metres
The new volume of B is equal to the volume of A.