23.3k views
4 votes
Find the current I flowing through a square with corners at (0,0,0), (2,0,0), (2,0,2), (0,0,2). The current density is: bold italic J equals bold y with bold hat on top open parentheses y squared plus 5 close parentheses space space space space space open parentheses straight A divided by straight m squared close parentheses

User Freak
by
8.1k points

1 Answer

1 vote

Parameterize the square (call it S) by


\mathbf s(u,v)=2u\,\mathbf x+2v\,\mathbf z

with both
u\in[0,1] and
v\in[0,1].

Take the normal vector pointing in the positive y direction to be


(\partial\mathbf s)/(\partial v)*(\partial\mathbf s)/(\partial u)=4\,\mathbf y

Then the current is


\displaystyle\iint_S(y^2+5)\,\mathbf y\cdot4\,\mathbf y\,\mathrm dA=20\int_0^1\int_0^1\mathrm dA=\boxed{20\,\mathrm A}

where
y^2+5 reduces to just 5 because
y=0 for all points in S.

User Shivendra Singh
by
7.9k points