Answer:
No Factors
Explanation:
![x^3-12x^2-19x+20 = 0\\Let \ p(x) = x^3-12x^2-19x+20](https://img.qammunity.org/2021/formulas/mathematics/college/dzurs700erkc1hqa7ytvf4uv1o66481mhz.png)
Factors of 20 = ±1, ±2 , ±4 , ±5 , ±10 and ±20
±1, ±2 and ±3 are not the factors of given polynomial.
Putting x = 4 in the given polynomial
![p(4) = (4)^3+12(4)^2-19(4)+20\\p(4) = 64+192-76+20\\p(4) = 200](https://img.qammunity.org/2021/formulas/mathematics/college/nha5vgujhumhlmlds3p34f7wfo7sdmhixh.png)
So, x = 4 is not a factor of p(x)
Putting x = -4 in the given equation
![p(-4) = (-4)^3+12(-4)^2-19(4)+20\\p(-4) = -64+192-76+20\\p(-4) = 73](https://img.qammunity.org/2021/formulas/mathematics/college/h21xu8c0abl6mlgzx8b39gjwcmgbz7vjlf.png)
So, x = -4 in the given equation
Putting x = 5 in the given equation
![p(5) = (5)^3+12(5)^2-19(5)+20\\p(5) = 125+300-95+20\\p(5) = 350](https://img.qammunity.org/2021/formulas/mathematics/college/ay5xlimbjvwwayazc2qwy23r4h8bs46ab9.png)
So, x = 5 is not a factor of p(x)
Putting x = -5 in the given equation
![p(-5) = (-5)^3+12(-5)^2-19(-5)+20\\p(-5) = -125+300+95+20\\p(-5) = 290](https://img.qammunity.org/2021/formulas/mathematics/college/ka0kdsnuwcy1dhz2g0tjscew066ac9jwe4.png)
So, x = -5 is not a factor of p(x)
Putting x = 10 in the given equation
![p(10) = (10)^3+12(10)^2-19(10)+20\\p(10) = 1000+1200-190+20\\p(10) = 2030](https://img.qammunity.org/2021/formulas/mathematics/college/zs89l1rs7ydcw8jqtzznz8zrjztham4k7l.png)
So, x = 10 is not a factor of p(x)
Putting x = -10 in the given equation
![p(-10) = (-10)^3+12(-10)^2-19(-10)+20\\p(-10) = -1000+1200+190+20\\p(-10) = 410](https://img.qammunity.org/2021/formulas/mathematics/college/v6caixx9xul6bze85zs3yzprsttgd8oo76.png)
So, x = -10 is not a factor of p(x)
Putting x = 20 in the given equation
![p(20) = (20)^3+12(20)^2-19(20)+20\\p(20) = 8000+4800-380+20\\p(20) = 12440](https://img.qammunity.org/2021/formulas/mathematics/college/akub0z0qiwcwj0qq54kjiuxj0w8v6wsw0n.png)
So, x = 20 is not a factor of p(x)
Putting x = -20 in the given equation
![p(-20) = (-20)^3+12(-20)^2-19(-20)+20\\p(-20) = -8000+4800+380+20\\p(-20) = -2800](https://img.qammunity.org/2021/formulas/mathematics/college/abb32g1ykrxbcdruxxz0gmmxuqucj8eb35.png)
So, x = -20 is not a factor of p(x)
From the above solution, we conclude that the given equation can not be factorized and thus, has no factors.