Answer:
3.18 m/s
Step-by-step explanation:
Given that
Initial speed of the ball, u = 20 m/s
Angle of inclination, θ = 45°
Distance from the ball, h = 50 m
Using equations of projectile to solve this, we have
We start by finding the time of flight, T
T = 2Usinθ/g
T = (2 * 20 * sin45)/9.8
T = (40 * 0.7071) / 9.8
T = 28.284/9.8
T = 2.89 s
Next we find the Range, R
R = u²sin2θ/g
R = (20² * sin 90) / 9.8
R = (400 * 1) / 9.8
R = 400/9.8 = 40.82 m
Distance the gk must cover
40.82 - 50 m
-9.18 m or 9.18 m in the opposite direction.
Speed of the GK = d/t
9.18 / 2.89 = 3.18 m/s