Answer:
The answer is "(0.461 , 7.206)"
Explanation:
In the given question some information is missing, that is data. so, the correct answer to this question can be defined as follows:
UnLogged:
![x_1=17.500\\s_1=3.529\\n_1=12](https://img.qammunity.org/2021/formulas/mathematics/college/mou7dn12hhko7xwbh2vfl4jqo7otcn6gmi.png)
Logged:
![x_2=13.667\\ s_2=4.500\\n_2=9\\](https://img.qammunity.org/2021/formulas/mathematics/college/e4aeivtabunjsx8xvbrdqdkpyeezvpgthu.png)
formula of std error:
![\ std \ error =\sqrt{(s_1^2)/(n_1)+(s_2^2)/(n_2)}](https://img.qammunity.org/2021/formulas/mathematics/college/opm6hnsnicl4bm7wk02scwmww84dnyen55.png)
![=\sqrt{(3.529^2)/(12)+(4.500^2)/(9)}\\\\=\sqrt{(3.529^2* 3+4.500^2* 4)/(36)}\\\\=1.8133](https://img.qammunity.org/2021/formulas/mathematics/college/e9rxvg2iijtp93vvjfg3g48ssz3a7kbuj3.png)
Point differential estimation =
![x_1-x _2](https://img.qammunity.org/2021/formulas/mathematics/college/stqy4dp41r8ln4u00xi49hu413mh1u49ql.png)
![= 17.500-13.667\\=3.833](https://img.qammunity.org/2021/formulas/mathematics/college/t90ieln01z2h4w2o3dl79d6k059trsgvtl.png)
For 90 percent t= 1.860 Cl & 8 df
error of margin E =
![t* \ std \ error](https://img.qammunity.org/2021/formulas/mathematics/college/pps1toenc0ziyxrolzykjyi113ohusor9w.png)
![= 1.860 * 1.8133\\= 3.373](https://img.qammunity.org/2021/formulas/mathematics/college/3c3grszfns2te520yhmddjnojlmxnqaalp.png)
Lower bound =mean difference -E=0.461
Upper bound = mean difference+ E=7.206
In the above 90% confidence interval were the population mean= (0.461 , 7.206)