Answer:
cosθ
Explanation:
Given the expression (sec θ + tan θ) x (1 – sin θ), to simplify he expression the following steps must be followed. First we must know that from trigonometry identity, secθ = 1/cos θ and tanθ = sinθ/cosθ
Substituting this foremulas in the expression we will have:
(sec θ + tan θ) x (1 – sin θ)
= (1/cosθ + sinθ/cosθ)* (1-sinθ)
= (1+sinθ/cosθ) *1-sinθ
= {(1+sinθ)(1-sinθ)/cosθ}
= (1-sinθ+sinθ-sin²θ)/cosθ
= 1-sin²θ/cosθ
Also, from pythagoras therorem, sin²θ+cos²θ = 1
cos²θ = 1-sin²θ
substituting cos²θ = 1-sin²θ into the final expression above we have:
1-sin²θ/cosθ = cos²θ/cosθ
= cosθ
(sec θ + tan θ) x (1 – sin θ) = cosθ