The Area of ∆MNL is 16.66cm².
∆LMN where mN = 38°
Side length NL = 7.2cm
ML = 4.8cm side length
Required:
∆ MNL Region
Solution:
Step 1: Using the sine rule, find Angle LMN sin(A)/a = sin(B)/b.
In which case sin(A) = sin(M) =?
a = NL = 7.2cm
38° sin(B) = sin(N)
b = ML = 4.8cm
Thus,
Sin(M)/7.2 equals sin(38)/4.8.
Multiply by 2
4.8 * sin(M) = 7.2 * sin(38)
4.8*sin(M) = 7.2*0.6157
4.8*sin(M) = 4.43304
Multiply both sides by 4.8.
sin(M) = 4.43304/4.8
sin(M) = 0.92355
M = sin-¹(0.92355) ≈ 67.45°
Step 2: Find m<L
angle M + angle N + angle L = 180 (sum of triangle angles)
180 = 67.45 + 38 + angle L
180 = 105.45 + angle L
Take 105.45 off both sides.
L = 180 minus 105.45
L angle = 74.55°
Step 3: Using the formula 12*a*b*sin(C), calculate the area of MNL.
Where,
a = NL = 7.2 cm
b = ML = 4.8 cm
sin(C) = sin(L) + sin(74.55) = sin(74.55)
Thus,
MNL area = 12*7.2*4.8*0.9639
= ½*33.31
= 16.655
Area of ∆MNL ≈ 16.66cm²