Note: The matrix referred to in the question is:
![M = \left[\begin{array}{ccc}1/2&1/3&0\\1/2&1/3&0\\0&1/3&1\end{array}\right]](https://img.qammunity.org/2021/formulas/computers-and-technology/college/k4gypzofyfoxoujujghm0c79z5ag1jtczu.png)
Answer:
a) [5/18, 5/18, 4/9]'
Step-by-step explanation:
The adjacency matrix is
![M = \left[\begin{array}{ccc}1/2&1/3&0\\1/2&1/3&0\\0&1/3&1\end{array}\right]](https://img.qammunity.org/2021/formulas/computers-and-technology/college/k4gypzofyfoxoujujghm0c79z5ag1jtczu.png)
To start the power iteration, let us start with an initial non zero approximation,
![X_o = \left[\begin{array}{ccc}1\\1\\1\end{array}\right]](https://img.qammunity.org/2021/formulas/computers-and-technology/college/tbdlg1od8a9agtwtuc46715rg48d3nmof3.png)
To get the rank vector for the first Iteration:
![X_1 = MX_0](https://img.qammunity.org/2021/formulas/computers-and-technology/college/hc3d815ekh0kqat959inko636l0t6r5q9m.png)
![X_1 = \left[\begin{array}{ccc}1/2&1/3&0\\1/2&1/3&0\\0&1/3&1\end{array}\right]\left[\begin{array}{ccc}1\\1\\1\end{array}\right] \\\\X_1 = \left[\begin{array}{ccc}5/6\\5/6\\4/3\end{array}\right]\\](https://img.qammunity.org/2021/formulas/computers-and-technology/college/7vjkn0xnbra7qpdkkuzc5hod658hntk908.png)
Multiplying the above matrix by 1/3
![X_1 = \left[\begin{array}{ccc}5/18\\5/18\\4/9\end{array}\right]](https://img.qammunity.org/2021/formulas/computers-and-technology/college/b91t5qe4fy5e0ggqes54sv1iv1vk3jgggi.png)