Answer:
volume of xy-plane outside the cone = 16π/3
Explanation:
using cylindrical coordinates
z² = x² +y² =====>z²=r²=====>z=r
x² + y² =4 ====>r = 2
So, the volume ∫∫∫dV equal
∫(θ = 0 to 2π) ∫(r = 0 to 2) ∫z=0 to r) 1 x (r dz dr dθ) via cylindrical coordinates
= ∫(θ = 0 to 2π) ∫(r = 0 to 2) r² dr dθ
= ∫(θ = 0 to 2π) (1/3)r³ {for r = 0 to 2} dθ
= 2π x 8/3
= 16π/3