Answer:
![z=(9900-10000)/((501)/(√(40)))= -1.262](https://img.qammunity.org/2021/formulas/mathematics/college/jxzqkuashienzrt2ghtslcglx8yv7jcew0.png)
![z=(10200-10000)/((501)/(√(40)))= 2.525](https://img.qammunity.org/2021/formulas/mathematics/college/7eqvcienk0y0b19fz7n3am13r8x1hth5mm.png)
And we can find the probability with this difference and using the normal standard distribution table and we got:
![P(-1.262 < z< 2.525) =P(Z<2.525) -P(Z<-1.262) = 0.994-0.103= 0.891](https://img.qammunity.org/2021/formulas/mathematics/college/bg3hbtpdfer8wta2uw73xufo079zpr7k44.png)
Explanation:
For this problem we have the following info:
represent the true mean
represent the deviation
representthe sample size selected
We want to find the following probability:
![P(9900 <\bar X <10200)](https://img.qammunity.org/2021/formulas/mathematics/college/94ts26ftyxt689912curklgxsllfbmibu1.png)
And for this case since the sample size is large enough we can use the central limit theorem and then we can use the z score formula given by:
![z=(\bar X -\mu)/((\sigma)/(√(n)))](https://img.qammunity.org/2021/formulas/mathematics/college/izfxtbxchq093nspp44r0kflq9cmvxqrgo.png)
Andreplacing we got:
![z=(9900-10000)/((501)/(√(40)))= -1.262](https://img.qammunity.org/2021/formulas/mathematics/college/jxzqkuashienzrt2ghtslcglx8yv7jcew0.png)
![z=(10200-10000)/((501)/(√(40)))= 2.525](https://img.qammunity.org/2021/formulas/mathematics/college/7eqvcienk0y0b19fz7n3am13r8x1hth5mm.png)
And we can find the probability with this difference and using the normal standard distribution table and we got:
![P(-1.262 < z< 2.525) =P(Z<2.525) -P(Z<-1.262) = 0.994-0.103= 0.891](https://img.qammunity.org/2021/formulas/mathematics/college/bg3hbtpdfer8wta2uw73xufo079zpr7k44.png)