Answer:
Area of ABCD = 959.93 units²
Explanation:
a). By applying Sine rule in the ΔABD,
![\frac{\text{SinA}}{46}=\frac{\text{Sin}\angle{DBA}}{35}](https://img.qammunity.org/2021/formulas/mathematics/high-school/xngulc1y2hzk84xvoshbkq8be4lu4znxc4.png)
![\frac{\text{Sin110}}{46}=\frac{\text{Sin}\angle{DBA}}{35}](https://img.qammunity.org/2021/formulas/mathematics/high-school/a5n9tu3j4afhnj5gw2krdz2ea97mg9ylnq.png)
Sin∠DBA =
![\frac{35* \text{Sin}(110)}{46}](https://img.qammunity.org/2021/formulas/mathematics/high-school/zaj9toeqmneyzd00737wr2s4q2er1vmx6o.png)
m∠DBA =
![\text{Sin}^(-1)(0.714983)](https://img.qammunity.org/2021/formulas/mathematics/high-school/9po15rivxkvktu0esn766qkvyr1l2qn0oh.png)
m∠DBA = 45.64°
Therefore, m∠ADB = 180° - (110° + 45.64°) = 24.36°
m∠ADB = 24.36°
c). Area of ABCD = Area of ΔABD + Area of ΔBCD
Area of ΔABD = AD×BD×Sin(
)
= 35×46Sin(12.18)
= 339.68 units²
Area of ΔBCD = BD×BC×Sin(
)°
= 46×27×(0.4994)
= 620.25 units²
Area of ABCD = 339.68 + 620.25
= 959.93 units²