184k views
4 votes
In a bi-prism experiment the eye-piece was placed at a distance 1.5m from the source. The distance between the virtual sources was found to be equal to 7.5 x 10-4 m. Find the wavelength of the source of light if the eye-piece has to be moved transversely through a distance of 1.88 cm for 10 fringes.

1 Answer

7 votes

Answer:

λ = 1.4 × 10^(-7) m

Step-by-step explanation:

We are given;

distance of eye piece from the source;D = 1.5 m

distance between the virtual sources;d = 7.5 × 10^(-4) m

To find the wavelength, we will use the formula for fringe width;

X = λD/d

Where X is fringe width, λ is wavelength, while d and D remain as before.

Now, fringe width = eye-piece distance moved transversely/number of fringes

Eye piece distance moved transversely = 1.88 cm = 1.88 × 10^(-2) m

Thus,

Fringe width = (1.88 × 10^(-2))/10 = 1.88 × 10^(-3) m

Thus;

1.88 × 10^(-3) = λ(1.5)/(7.5 × 10^(-4))

λ = [1.88 × 10^(-3) × (7.5 × 10^(-4))]/1.5

λ = 1.4 × 10^(-7) m

User Sowjanya Attaluri
by
5.6k points