Answer:
c.

Step-by-step explanation:
In order to calculate the gravitational force on the mass of the center, you take into account the following formula:
(1)
Furthermore, you take into account the components of the resultant vector.
By the illustration, you have that the force is given by:
![F_T=F_1+F_2+F_3+F_4\\\\F_1=(Gm_1m)/(r^2)[-cos45\°\hat{i}+sin45\°\hat{j}]\\\\F_2=(Gm_2m)/(r^2)[cos45\°\hat{i}+sin45\°\hat{j}]\\\\F_3=(Gm_3m)/(r^2)[cos45\°\hat{i}-sin45\°\hat{j}]\\\\F_4=(Gm_4m)/(r^2)[-cos45\°\hat{i}-sin45\°\hat{j}]](https://img.qammunity.org/2021/formulas/physics/college/yp7lwbnm9dwmakob2iha2isflzoohihrbm.png)
where:
m1 = m
m2 = 2m
m3 = m
m4 = 4m
m: mass at the center of the system
The distance r is:

You replace the values for all masses and sum the contributions of all forces:
![F_1=(√(2))/(2)(Gm^2)/(((d^2)/(2)))[-\hat{i}+\hat{j}]=√(2)(Gm^2)/(d^2)[-\hat{i}+\hat{j}]\\\\F_2=(√(2))/(2)(2Gm^2)/(((d^2)/(2)))[\hat{i}+\hat{j}]=2√(2)(Gm^2)/(d^2)[\hat{i}+\hat{j}]\\\\F_3=(√(2))/(2)(Gm^2)/(((d^2)/(2)))[\hat{i}-\hat{j}]=√(2)(Gm^2)/(s^2)[\hat{i}-\hat{j}]\\\\F_4=(√(2))/(2)(4Gm^2)/(((d^2)/(2)))[-\hat{i}-\hat{j}]=4√(2)(Gm^2)/(d^2)[-\hat{i}-\hat{j}]\\\\F_T=-2√(2)(Gm^2)/(d^2)}[\hat{i}+\hat{j}]](https://img.qammunity.org/2021/formulas/physics/college/zga5nfnqynqa90zamyz032m9jil0viy36d.png)
and the magnitude is:
c.
