Answer:
96.41% of players on the team run the 100-meter dash in 13.36 seconds or faster
Explanation:
When the distribution is normal, we use the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this question, we have that:

What percentage of players on the team run the 100-meter dash in 13.36 seconds or faster
We have to find the pvalue of Z when X = 13.36.



has a pvalue of 0.9641
96.41% of players on the team run the 100-meter dash in 13.36 seconds or faster