Answer:
Jeweler B = more accurate
Jeweler A = more precise
Error:
0.008, 0
% error :
0.934% ; 0
Step-by-step explanation:
Given that:
True mass of nugget = 0.856
Jeweler A: 0.863 g, 0.869 g, 0.859 g
Jeweler B: 0.875 g, 0.834 g, 0.858 g
Official measurement (A) = 0.863 + 0.869 + 0.859 = 2.591 / 3 = 0.864
Official measurement (B) = 0.875 + 0.834 + 0.858 = 2.567 / 3 = 0.8556
Accuracy = closeness of a measurement to the true value
Accuracy = true value - official measurement
Jeweler A's accuracy :
0.856 - 0.864 = - 0.008
Jeweler B's accuracy :
0.856 - 0.856 = 0.00
Therefore, Jeweler B's official measurement is more accurate as it is more close to the true value of the gold nugget.
However, Jeweler A's official measurement is more precise as each Jeweler A's measurement are closer to one another than Jeweler B's measurement which are more spread out.
Error:
Jeweler A's error :
0.864 - 0.856 = 0.008
% error =( error / true value) × 100
% error = (0.008/0.856) × 100% = 0.934%
Jeweler B's error :
0.856 - 0.856 = 0 ( since the official measurement as been rounded to match the decimal representation of the true value)
% error = 0%