Answer:
No real solution
Explanation:
Given
![y = x^2 + 12x + 30](https://img.qammunity.org/2021/formulas/mathematics/middle-school/4ltqgb7uhotsyvb3vr3sqqzkbul88b3unj.png)
![8x - y = 10](https://img.qammunity.org/2021/formulas/mathematics/middle-school/988n98mevgkd6vg0yo0ml366zyamyq82b6.png)
Required
Find x and y
Make y the subject of formula in
![8x - y = 10](https://img.qammunity.org/2021/formulas/mathematics/middle-school/988n98mevgkd6vg0yo0ml366zyamyq82b6.png)
![8x - y + y = 10 + y](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ita3o6hh7g3c198fsrl1j97vh8ca2ca9it.png)
![8x = 10 + y](https://img.qammunity.org/2021/formulas/mathematics/middle-school/cbsmo081s8eqkxxkvmlrrh8w0iyio2qnae.png)
Subtract 10 from both sides
![8x - 10 = 10 - 10 + y](https://img.qammunity.org/2021/formulas/mathematics/middle-school/xwyaoojnqwnkwazcfozg8ovayyj7q2zgcw.png)
![8x - 10 = y](https://img.qammunity.org/2021/formulas/mathematics/middle-school/72hegkw6ncohe9h76hg8q7w49kdyww8msx.png)
Substitute 8x - 10 for y in
![y = x^2 + 12x + 30](https://img.qammunity.org/2021/formulas/mathematics/middle-school/4ltqgb7uhotsyvb3vr3sqqzkbul88b3unj.png)
![8x - 10 = x^2 + 12x + 30](https://img.qammunity.org/2021/formulas/mathematics/middle-school/1u4q3qj1k05vdb4yow1ct4apbck3qa2mv1.png)
Subtract (8x - 10) from both sides
![8x - 10 - (8x - 10) = x^2 + 12x + 30 - (8x - 10)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/go68802zd5fnv3ucgzq8cs466c0r09uq4a.png)
![0 = x^2 + 12x + 30 - (8x - 10)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/hx6xsyrpyo7x6i1zywchpg74a4r8eia8b7.png)
![0 = x^2 + 12x + 30 - 8x + 10](https://img.qammunity.org/2021/formulas/mathematics/middle-school/jntpxye8srmxz0ocykll1lyqijmcv19h1o.png)
Collect like terms
![0 = x^2 + 12x -8x + 30+ 10](https://img.qammunity.org/2021/formulas/mathematics/middle-school/dtim9rbyyk8ihz7bbv6ggtagcp06cmhyvv.png)
![0 = x^2 + 4x + 40](https://img.qammunity.org/2021/formulas/mathematics/middle-school/8rtn6zmy6dfgbrpl5svboa4nfx7p5zzfzw.png)
![x^2 + 4x + 40 = 0](https://img.qammunity.org/2021/formulas/mathematics/middle-school/iykip5ue2r2ho6izbw3i6ozlq3k1k4lvmi.png)
At this point, we have a quadratic equation;
First, we'll check if the quadratic equation has real solution using:
![d = b^2 - 4ac](https://img.qammunity.org/2021/formulas/mathematics/middle-school/nc3lxza4asiw1vs4qqdw29fanuni41cxcf.png)
Where a = 1; b = 4 and c= 40
![d = 4^2 - 4 * 1 * 40](https://img.qammunity.org/2021/formulas/mathematics/middle-school/9gjhlyfjk8fp95rpgubv80myhbiyxlbsha.png)
![d = 16 - 160](https://img.qammunity.org/2021/formulas/mathematics/middle-school/g2t42bfgj3mz1aqm5ed52hi61shm8op73r.png)
![d = -144](https://img.qammunity.org/2021/formulas/mathematics/middle-school/bj5ay3cytg0k9tdms9r6forw6xdflq9nuk.png)
Because the value of d is negative, then we can conclude that the solution has no real solution