Answer:
CI: {0.4085; 0.6647}
Explanation:
The confidence interval for a proportion (p) is given by:
![p \pm z*\sqrt{((1-p)*p)/(n) }](https://img.qammunity.org/2021/formulas/mathematics/college/ug9jxr2wbtc0remii9ybbxwkz17ip5q3xp.png)
Where n is the sample size, and z is the z-score for the desired confidence interval. The score for a 90% confidence interval is 1.645. The proportion of depositors who ask for cash back is:
![p=(22)/(41)=0.536585](https://img.qammunity.org/2021/formulas/mathematics/college/z2or736dmv3y9xlpai7p56r5fgrbp128z6.png)
Thus the confidence interval is:
![0.536585 \pm 1.645*\sqrt{((1-0.536585)*0.536585)/(41)}\\0.536585 \pm 0.128109\\L=0.4085\\U=0.6647](https://img.qammunity.org/2021/formulas/mathematics/college/yybbrx5k6bv025aca0cdgyjcene8nd51pz.png)
The confidence interval for the proportion of all depositors who ask for cash back is CI: {0.4085; 0.6647}