Answer:

General Formulas and Concepts:
Pre-Calculus
- Partial Fraction Decomposition
Calculus
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Addition/Subtraction]:
![\displaystyle (d)/(dx)[f(x) + g(x)] = (d)/(dx)[f(x)] + (d)/(dx)[g(x)]](https://img.qammunity.org/2021/formulas/mathematics/college/kqosumt4896r7x44jgtw0o7kk6g4d3irvr.png)
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Integration
Integration Rule [Fundamental Theorem of Calculus 1]:

Integration Property [Multiplied Constant]:

Integration Property [Addition/Subtraction]:
![\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/ytcjdhza3nvop8ti8icbfc977nz2k5ug6b.png)
U-Substitution
Explanation:
Step 1: Define
Identify

Step 2: Integrate Pt. 1
- [Integral] Rewrite [Integration Property - Multiplied Constant]:

- [Integrand] Factor:

Step 3: integrate Pt. 2
- [Integrand] Split [Partial Fraction Decomp]:

- [Decomp] Rewrite:

- [Decomp] Substitute in y = -2:

- Simplify:

- Solve:

- [Decomp] Substitute in y = 11:

- Simplify:

- Solve:

- [Split Integrand] Substitute in variables:

Step 4: Integrate Pt. 3
- [Integral] Rewrite [Split Integrand]:

- [Integral] Rewrite [Integration Property - Addition/Subtraction]:
![\displaystyle \int\limits^(10)_(-1) {(13y)/(y^2 - 9y - 22)} \, dy = 13 \bigg[ \int\limits^(10)_(-1) {((11)/(13))/(y - 11)} \, dy + \int\limits^(10)_(-1) {((2)/(13))/(y + 2)} \, dy \bigg]](https://img.qammunity.org/2021/formulas/mathematics/college/8cwr3450sbu0vcy2ntlmroxcso8bpdu3cz.png)
- [Integrals] Rewrite [Integration Property - Multiplied Constant]:
![\displaystyle \int\limits^(10)_(-1) {(13y)/(y^2 - 9y - 22)} \, dy = 13 \bigg[ (11)/(13)\int\limits^(10)_(-1) {(1)/(y - 11)} \, dy + (2)/(13)\int\limits^(10)_(-1) {(1)/(y + 2)} \, dy \bigg]](https://img.qammunity.org/2021/formulas/mathematics/college/irjzr6tth24zxd7bo988cczyqs22ozmave.png)
Step 5: Integrate Pt. 4
Identify variables for u-substitution.
Integral 1
- Set u:

- [u] Differentiation [Basic Power Rule, Derivative Properties]:

- [Bounds] Switch:

Integral 2
- Set v:

- [v] Differentiate [Basic Power Rule, Derivative Properties]:

- [Bounds] Switch:

Step 6: Integrate Pt. 5
- [Integrals] U-Substitution:
![\displaystyle \int\limits^(10)_(-1) {(13y)/(y^2 - 9y - 22)} \, dy = 13 \bigg[ (11)/(13)\int\limits^(-1)_(-12) {(1)/(u)} \, du + (2)/(13)\int\limits^(12)_(1) {(1)/(v)} \, dv \bigg]](https://img.qammunity.org/2021/formulas/mathematics/college/xw8v2lcq3a2cvcv0uzyb6b76ba0s7677av.png)
- [Integrals] Logarithmic Integration:
![\displaystyle \int\limits^(10)_(-1) {(13y)/(y^2 - 9y - 22)} \, dy = 13 \bigg[ (11)/(13)(\ln |u|) \bigg| \limits^(-1)_(-12) + (2)/(13)(\ln |v|) \bigg| \limits^(12)_(1) \bigg]](https://img.qammunity.org/2021/formulas/mathematics/college/uekxblnslvwkuplhxujv4gvfiz0cyg7stf.png)
- Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:
![\displaystyle \int\limits^(10)_(-1) {(13y)/(y^2 - 9y - 22)} \, dy = 13 \bigg[ (11)/(13)[-\ln (12)] + (2)/(13)[\ln (12)] \bigg]](https://img.qammunity.org/2021/formulas/mathematics/college/hy9fjmzgvmepu6mnnhwaenk6c424eczfbd.png)
- Simplify:
![\displaystyle \int\limits^(10)_(-1) {(13y)/(y^2 - 9y - 22)} \, dy = 11[-\ln (12)] + 2[\ln (12)]](https://img.qammunity.org/2021/formulas/mathematics/college/kjsw98l0jduxzsef2253dqai02493msgct.png)
- Simplify:
![\displaystyle \int\limits^(10)_(-1) {(13y)/(y^2 - 9y - 22)} \, dy = -11\ln (12)] + 2\ln (12)](https://img.qammunity.org/2021/formulas/mathematics/college/b0ohfecz7pw9skkn894kluhbu1h6o02tzo.png)
- Simplify:

Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration