Answer:
dy/dx = (2x − y² − 7) / (2xy + 3y² + 7)
Explanation:
x² / (x + y) = y² + 7
x² = (x + y) (y² + 7)
Take derivative of both sides with respect to x. Use power rule, product rule, and chain rule.
2x = (x + y) (2y dy/dx) + (y² + 7) (1 + dy/dx)
Simplify.
2x = (2xy + 2y²) dy/dx + y² + y² dy/dx + 7 + 7 dy/dx
2x = (2xy + 3y² + 7) dy/dx + y² + 7
2x − y² − 7 = (2xy + 3y² + 7) dy/dx
dy/dx = (2x − y² − 7) / (2xy + 3y² + 7)