Answer:
![(-3x^2-7x-4)/(x^3-2x^2-9x+18)](https://img.qammunity.org/2021/formulas/mathematics/high-school/o6umi9mh4tgz375tnb358j2b7w8asa6jdp.png)
Explanation:
![(2)/(x^2-9)-(3x)/(x^2-5x+6)](https://img.qammunity.org/2021/formulas/mathematics/high-school/l3tg7hjhkkdeoyssx7jclwuqtw4utmlbdb.png)
Factor x²-9 and x²-5x+6.
![(2)/(\left(x+3\right)\left(x-3\right))-(3x)/(\left(x-2\right)\left(x-3\right))](https://img.qammunity.org/2021/formulas/mathematics/high-school/5lgdh94y9szpyi9fr8198dpwpo62dr3fj9.png)
Least common multiple of (x+3), (x-3), (x-2), and (x-3) is (x+3), (x-3), and (x-2).
Adjust the fractions based on LCM.
![(2\left(x-2\right))/(\left(x+3\right)\left(x-3\right)\left(x-2\right))-(3x\left(x+3\right))/(\left(x-2\right)\left(x-3\right)\left(x+3\right))](https://img.qammunity.org/2021/formulas/mathematics/high-school/hjuq7eqqz35vr707jtvqljmd3p6ktf5f86.png)
Subtract the fractions since denominators are equal.
![(2\left(x-2\right)-3x\left(x+3\right))/(\left(x+3\right)\left(x-3\right)\left(x-2\right))](https://img.qammunity.org/2021/formulas/mathematics/high-school/9sonek2bmwhpdpcz5y1ihfwqoqzd3kj6ab.png)
Expand.
![(-3x^2-7x-4)/(x^3-2x^2-9x+18)](https://img.qammunity.org/2021/formulas/mathematics/high-school/o6umi9mh4tgz375tnb358j2b7w8asa6jdp.png)
The fraction can be in factored form.
![(-\left(x+1\right)\left(3x+4\right))/(\left(x-2\right)\left(x+3\right)\left(x-3\right))](https://img.qammunity.org/2021/formulas/mathematics/high-school/ii73k6kiobb2z8s6f133lwwhf0fua04d2o.png)