Answer:
(a) α = 35.20 rad/s^2
(b) θ = 802°
(c) v = 139.73 cm/s
(d) a = 156.64 cm/s^2
Step-by-step explanation:
(a) To find the angular acceleration of the disc you use the following formula:
(1)
w: angular speed of the disc = 31.4 rad/s
wo: initial angular speed = 0 rad/s
t: time = 0.892s
You replace the values of the parameters in the equation (1):
![\alpha=(31.4rad/s-0rad/s)/(0.892s)=35.20(rad)/(s^2)](https://img.qammunity.org/2021/formulas/physics/college/t6hxrgnebr9ro7mf2n01ejwqh500ysffjf.png)
The angular acceleration of the disc, for the given time, is 35.20rad/s^2
(b) To calculate the angle describe by the disc in such a time you use:
(2)
![\theta=(1)/(2)(35.20rad/s^2)(0.892s)^2=14.00rad](https://img.qammunity.org/2021/formulas/physics/college/2jw1t7zy5hxpswpau7unv0mxpkkyhii147.png)
In degrees you have:
![\theta=14.00rad*(180\°)/(\pi \ rad)=802\°](https://img.qammunity.org/2021/formulas/physics/college/w6o31a0kv0p93a1pqlfvo47lusd9xixshs.png)
The angle described by the disc is 802°
(c) To calculate the tangential speed of the microbe for t=0.892s, you use the following formula:
(3)
w: angular speed for t = 0.892s = 31.4rad/s
r: radius of the disc = 4.45cm
![v=(31.4rad/s)(4.45cm)=139.73(cm)/(s)](https://img.qammunity.org/2021/formulas/physics/college/r9wycu04rng1kewnhs5j0emn4lumlnsufb.png)
The tangential speed is 139.73 cm/s
(d) The tangential acceleration is calculated by using the following formula:
![a=\alpha r](https://img.qammunity.org/2021/formulas/physics/college/yot0rbibnhe7fqzspe29tryk8ojwb4fjff.png)
α: angular acceleration for t=0.892s
![a=(35.20rad/s^2)(4.45cm)=156.64(cm)/(s^2)](https://img.qammunity.org/2021/formulas/physics/college/36acs4gnvdu1copp91on6akrnrm1o39gn3.png)
The tangential acceleration is 156.64cm/s^2