Answer:
a) y₂ (x) = e ⁵ˣ
Complementary function
![y_(C) = C_(1) {e^(-5x) } + C_(2) {e^(5x) }](https://img.qammunity.org/2021/formulas/mathematics/college/kfg75f7rjmftxxlqpry4t3klbhrfmp8ps7.png)
b) particular integral
![P.I = y_(p) = (-4)/(25)](https://img.qammunity.org/2021/formulas/mathematics/college/xi9ztpa2t8juqtba2g7klpjrtrrwg0hs6o.png)
Explanation:
step(i):-
Given differential equation y''-25y= 4
operator form
⇒ D²y - 25 y =4
⇒ (D² - 25) y =4
This is the form of f(D)y = ∝(x)
where f(m) = D² - 25 and ∝(x) =4
The auxiliary equation A(m) =0
⇒ m² - 25 =0
m² - 5² =0
⇒ (m+5)(m-5) =0
⇒ m =-5 , 5
Complementary function
![y_(C) = C_(1) {e^(-5x) } + C_(2) {e^(5x) }](https://img.qammunity.org/2021/formulas/mathematics/college/kfg75f7rjmftxxlqpry4t3klbhrfmp8ps7.png)
This is form of
![y_(C) = C_(1) y_(1) (x) + C_(2) y_(2) (x)](https://img.qammunity.org/2021/formulas/mathematics/college/vspozgikyw78zczvdzo5fjl5iegqe4zsz1.png)
where y₁ (x) = e⁻⁵ˣ and y₂ (x) = e ⁵ˣ
Step(ii):-
Particular integral:-
![P.I = y_(p) = (1)/(f(D)) \alpha (x)](https://img.qammunity.org/2021/formulas/mathematics/college/ewfd1v77m9sjk9efpa219gjxg0bg5sfvc1.png)
![P.I = y_(p) = (1)/(D^(2) -25) 4](https://img.qammunity.org/2021/formulas/mathematics/college/2yrnlh89hm14l3x4da2z6tb6oyh9g7tggv.png)
=
![= (1)/(D^(2) -25) 4e^(0x)](https://img.qammunity.org/2021/formulas/mathematics/college/ggdgk9jsrr1t6kpj783ivnezq5cfo91a57.png)
put D = 0
The particular integral
![y_(p) = (1)/( -25) 4](https://img.qammunity.org/2021/formulas/mathematics/college/axc0r84gs0q85ezwnq37r180ks9x4q13s1.png)
![P.I = y_(p) = (-4)/(25)](https://img.qammunity.org/2021/formulas/mathematics/college/xi9ztpa2t8juqtba2g7klpjrtrrwg0hs6o.png)
Conclusion:-
General solution of given differential equation
![y = y_(C) +y_(P)](https://img.qammunity.org/2021/formulas/mathematics/college/9ddjm5u6egilgl10nbaom8fdpbvoj6vz89.png)
![y = C_(1) {e^(-5x) } + C_(2) {e^(5x) } -(4)/(25)](https://img.qammunity.org/2021/formulas/mathematics/college/meo8ngz6cunnmzq8hr36b8bwphud4uol75.png)