Answer:
base side = 9.037 inches
height = 6.024 inches
Minimum cost = 196 cents
Explanation:
The volume of the bin is given by:
![Volume = side^2 * height](https://img.qammunity.org/2021/formulas/mathematics/college/5akuol1wqsaj5r0dlmg2ekxd8mh66pwwfm.png)
and the surface area of the bin is given by:
![Surface\ area = side^2 + 4*side*height](https://img.qammunity.org/2021/formulas/mathematics/college/5c7pii3skdz5zgxlv7osyj5auk8zkdq4a9.png)
The cost of the bin will be:
![Cost = 0.8*side^2 + 0.6*4*side*height](https://img.qammunity.org/2021/formulas/mathematics/college/txpjkn8q14osnerehuwek08lusgjdzeo7j.png)
![Cost = 0.8*side^2 + 2.4*side*height](https://img.qammunity.org/2021/formulas/mathematics/college/apw1cf80f93wd6qjotth038zm5502uxcwk.png)
From the volume equation, we have:
![height = 492 / side^2](https://img.qammunity.org/2021/formulas/mathematics/college/jnst07sztm4sc26f33dexal61hxvth4csi.png)
Now the cost will be:
![Cost = 0.8*side^2 + 2.4*side*492/side^2](https://img.qammunity.org/2021/formulas/mathematics/college/ztdareupjsdy5p00ne0bdxew21phf7sn9q.png)
![Cost = 0.8*side^2 + 1180.8/side](https://img.qammunity.org/2021/formulas/mathematics/college/bwu8exjmy0cs8fxi3ld1ybjeg9esi0big9.png)
To find the side that gives the minimum cost, we can find the derivative of Cost in relation to side and then make it equal zero:
Abbreviating Cost as C and side as s, we have:
![dC/ds = 0.8*2*s - 1180.8/s^2](https://img.qammunity.org/2021/formulas/mathematics/college/xc6p4oacjnj4ompij0raub33fuqpxkrdez.png)
![1.6s - 1180.8/s^2 = 0](https://img.qammunity.org/2021/formulas/mathematics/college/z6eimxe1qz557d6r5wgynqwn4gctpa2o8x.png)
![1.6s = 1180.8/s^2](https://img.qammunity.org/2021/formulas/mathematics/college/wlc7ib2t6z2d2uqy8la07c27lpgv65efae.png)
![1.6s^3 = 1180.8](https://img.qammunity.org/2021/formulas/mathematics/college/vmgvlmfogjg6mw2i96ksuld8mxgbglaiq9.png)
![s^3 = 738](https://img.qammunity.org/2021/formulas/mathematics/college/rncf956w4l5r6ztbcmmn5ri35ko41giaxg.png)
![s = 9.037\ in](https://img.qammunity.org/2021/formulas/mathematics/college/1hmud05bv0wbczoabcyeyvsem8nruidsb7.png)
Finding the height of the bin, we have:
![height = 492 / 9.037^2](https://img.qammunity.org/2021/formulas/mathematics/college/9t1e5rvqxsbtqyoxpmcskn7tn2i1h1k1nk.png)
![height = 6.024\ in](https://img.qammunity.org/2021/formulas/mathematics/college/jy8lg61savmjapwgo6ybmhovb0l72mv51f.png)
The minimum cost is:
![Cost = 0.8*9.037^2 + 1180.8/9.037 = 196\ cents](https://img.qammunity.org/2021/formulas/mathematics/college/tra64mtlfrk6rfj6zthfku7716vtr2y01h.png)