Answer:
95% of confidence intervals for the proportion of all dies that pass the probe.
(0.4867 , 0.6453)
Explanation:
Step(i):-
Given sample size 'n' = 150
The sample proportion
![p = (x)/(n) = (85)/(150) = 0.566](https://img.qammunity.org/2021/formulas/mathematics/college/63o1qxa3ut5y47e6ph1ifrmslttbo1vn8l.png)
Level of significance = 0.05
The critical value Z₀.₀₅ = 1.96
Step(ii):-
95% of confidence intervals for the proportion of all dies that pass the probe.
![(p^(-) - Z_(0.05) (√(p(1-p)) )/(√(n) ) , p^(-) + Z_(0.05) (√(p(1-p)) )/(√(n) ))](https://img.qammunity.org/2021/formulas/mathematics/college/y1ta0n4lhyyuls08igssm49211uqizr0m8.png)
![(0.566 - 1.96(√(0.566(1-0.566)) )/(√(150) ) , 0.566 + 1.96(√(0.566(1-0.566)) )/(√(150) ))](https://img.qammunity.org/2021/formulas/mathematics/college/5civ1tbpgne6b8dn767jnkablrvgi2r11n.png)
( 0.566 - 0.0793 , 0.566 + 0.0793)
(0.4867 , 0.6453)
Conclusion:-
95% of confidence intervals for the proportion of all dies that pass the probe.
(0.4867 , 0.6453)