Answer:
The correct option is;
(B) 30
Explanation:
The equations are;
x² - 2·m·x - 5·n = 0.............(1)
Solution = p, q
x² - 2·p·x - 5·q = 0..............(2)
Solution = m, n
For equation (1), we have;
x² - 2·m·x - 5·n = 0 = (x - p)·(x - q)
x² - 2·m·x - 5·n = x² -x·p - x·q + q·p = x² -x·(p + q) + q·p
2·m = p + q..............(3)
5·n = -q·p..............(4)
Given the similarity between equation (1) and (2), we have;
2·p = m + n..............(5)
5·q = -m·n..............(6)
Therefore;
m = (p + q)/2
n = -q·p/5
Substituting the value of m and n in equation (5) and (6), we have;
2·p = (p + q)/2 - q·p/5.............(7)
5·q = (p + q)/2·q·p/5.............(8)
Making q the subject of equation (7) gives;
Substituting the value of q above in equation (8) gives;
By cross multiplying and collecting like terms we have;
6·p⁵ -75·p⁴-150·p³+1500·p²-1875·p = 0
Which gives
(p+0)(p-1.91)(p-2.5)(p+5)(p-13.1)
p = 1.91 or 2.5 or -5 or 13.1
q = 24.27 or undef or -5 or -9.27
m = 13.09 or undef or -5 or 1.95
n = -9.27 or undef or -5 or -24.29
Therefore, p + q + m + n = 1.91 + 24.27 + 13.09 + (-9.27) = 30
The correct option is (B) 30