8.7k views
1 vote
There are 20 machines in a factory. 7 of the machines are defective.

Assuming you randomly choose one, place it back in the pile and randomly choose the
second one, what is the probability that both choices will be defective machines?

User JP Aquino
by
5.9k points

1 Answer

5 votes

Answer:

0.1225

Explanation:

Given

Number of Machines = 20

Defective Machines = 7

Required

Probability that two selected (with replacement) are defective.

The first step is to define an event that a machine will be defective.

Let M represent the selected machine sis defective.

P(M) = 7/20

Provided that the two selected machines are replaced;

The probability is calculated as thus

P(Both) = P(First Defect) * P(Second Defect)

From tge question, we understand that each selection is replaced before another selection is made.

This means that the probability of first selection and the probability of second selection are independent.

And as such;

P(First Defect) = P (Second Defect) = P(M) = 7/20

So;

P(Both) = P(First Defect) * P(Second Defect)

PBoth) = 7/20 * 7/20

P(Both) = 49/400

P(Both) = 0.1225

Hence, the probability that both choices will be defective machines is 0.1225

User Nick Forge
by
4.8k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.